A Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals

نویسنده

  • S. Shirvani
چکیده

In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL/EGM algorithm determines the number of non-coherent signal groups, and then the JADE algorithm estimates the generalized steering vectors considering white/colored Gaussian noise. Finally, the MFBLP algorithm is applied to estimate DOAs of coherent signals in each group. A new Normalized Root Mean Square Error (NRMSE) is also proposed that introduces a more realistic metric to compare the performance of DOA estimation methods. Simulation results show that the proposed algorithm can resolve sources regardless of QAM modulation size. In addition, simulations in white/colored Gaussian noises show that the proposed algorithm outperforms the JADE-MUSIC algorithm in a wide range of Signal to Noise Ratios (SNRs).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals

In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...

متن کامل

Two Uniform Linear Arrays for Non-Coherent and Coherent Sources for Two Dimensional Source Localization

This paper presents a novel method for the two-dimensional direction of arrival (DOA) estimation based on QR decomposition. A configuration with two uniform linear antenna arrays (ULAs) is employed for the joint estimation of elevation (θ) and azimuth (φ) angles. Q data matrix will estimate the azimuth angle while R data matrix will estimate the elevation angle. The proposed method utilizes onl...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

Fast Direction of Arrival Estimation with the Coexistence of both Uncorrelated and Coherent Signals

This paper proposes a novel fast direction of arrival (DOA) estimation method for scenarios when uncorrelated and coherent signals exist simultaneously. First, using uniform transformation, we change complex matrix into real matrix, then, just by exploiting real propagator method (RPM), we can attain the uncorrelated signals DOA fastly. Second, based on new spatial difference technique, we can ...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015